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ABSTRACT
Ray tracing has been used for years in motion picture to generate
photorealistic images while faster raster-based shading techniques
have been preferred for video games to meet real-time require-
ments. However, recent Graphics Processing Units (GPUs) incor-
porate hardware accelerator units designed for ray tracing. These
accelerator units target the process of traversing hierarchical tree
data structures used to test for ray-object intersections. Distinct
rays following similar paths through these structures execute many
redundant ray-box intersection tests. We propose a ray intersection
predictor that speculatively elides redundant operations during
this process and proceeds directly to test primitives that the ray is
likely to intersect. A key aspect of our predictor strategy involves
identifying hash functions that preserve enough spatial informa-
tion to identify redundant traversals. We explore how to integrate
our ray prediction strategy into existing GPU pipelines along with
improving the predictor effectiveness by predicting nodes higher in
the tree as well as regrouping and scheduling traversal operations
in a low cost, judicious manner. On a mobile class GPU with a ray
tracing accelerator unit, we find the addition of a 5.5KB predictor
per streaming multiprocessor improves performance for ambient
occlusion workloads by a geometric mean of 26%.

CCS CONCEPTS
• Computing methodologies→ Ray tracing; Graphics proces-
sors;Modeling and simulation.
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1 INTRODUCTION
Real-time ray tracing is poised to change the landscape of video
games. GPUs with hardware accelerated ray tracing enable devel-
opers to fit more convincing visual effects in their computational
budget [9]. Ray tracing produces realistic images through physi-
cally accurate rendering algorithms. The common Whitted-style
ray tracing [59] models light transport as rays that originate from
the camera and interact with the environment. These rays traverse
the scene and accumulate color as they intersect with objects and
lights. As a result, ray tracing can render visual effects that are not
possible in raster-based graphics. For example, rasterization culls
objects not visible from the camera and thus cannot track indirect
illumination originating from the culled objects.

Ray tracing features abundant parallelism and appears well
suited to Single Instruction Multiple Data (SIMD) execution. Mod-
ern ray tracing makes use of acceleration structures (AS), such
as the Bounding Volume Hierarchy (BVH), which organize scene
data to improve the efficiency of searching for ray intersections.
AS traversal must be performed for each ray, and rays randomly
scattering through a scene will become incoherent1—intersecting
objects that are potentially far apart. A naive implementation of
ray tracing would therefore be inefficient in both power and mem-
ory utilization. For example, incoherent rays lead to computational
overhead and memory divergence, especially on SIMD architec-
tures. These incoherent rays also place a strain on the memory
hierarchy by competing for memory bandwidth and thrashing the
cache [55]. However, incoherent rays produce the most impressive
graphical effects, creating contention between visual quality and
computational footprint [23].

1In the graphics community the term “incoherent” refers to a lack of locality.
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Figure 1: Distribution of memory accesses for ambient occlu-
sion workloads averaged over seven scenes with 1024×1024
pixels and 4 samples per pixel (left). Speedups of varying L1
cache sizes without the predictor, relative to 64KB baseline
(right).

Ambient Occlusion (AO) is one of such effects that benefits from
ray tracing acceleration. AO rays are known as occlusion rays and
test for any object intersection, without requiring the closest inter-
section to be found. Occlusion rays are common and performance
critical as evidenced by the support to skip closest-hit shader exe-
cution in modern ray tracing APIs such as Vulkan [57], DXR [36],
and OptiX [42]. Basic rendering can be performed efficiently with
rasterization then augmented with ray tracing to maintain real-time
performance [6]. Many commercial games extend their existing
rasterization approach with ray-traced effects [8, 49]; the hardware
should mimic this composition.

The AO workload has high computational requirements because
each intersection point must be sampled with many rays. Further-
more, rays for AO are typically short and exhibit significant re-
dundancy in the AS nodes that they visit. Figure 1 illustrates the
distribution of memory access types for each unique ray in an AO
workload, averaged over seven scenes. Repeated BVH Node Accesses
in Figure 1 (left) form around 88% of memory accesses. Since they
are not part of the final ray intersection computation, there is an
opportunity to improve performance by predicting the traversal
and skipping them. Simply using a cache would require a prohibi-
tively large structure to achieve similar speedups seen in Figure 1
(right) due to the large working set size.

Prior works attempt to accelerate ray tracing with dedicated
hardware to speed up AS traversal and ray intersection tests [26,
28, 38, 39, 50, 54, 61]. However, these designs are implemented as
individual accelerators in isolation from the GPU. Another area
of research explores efficient use of GPU hardware by reducing
ray incoherence [1, 2, 7, 20, 31, 34, 44, 58] or creating optimized
acceleration structures that better fit the SIMD nature of a GPU [30,
62]. However, current ray tracing performance is still insufficient
for real-time rendering on “AAA games” [56].

We propose a ray intersection predictor to exploit redundancy in
occlusion ray traversal and improve memory hierarchy utilization.
Unlike previous inter-frame memoization works in raster graph-
ics [3, 4], our predictor focuses on redundancies in the current
frame. We leverage the property of occlusion rays that they only
test for any intersection rather than the closest. The predictor forms
its predictions using results from previous AS traversals of similar
rays—as determined by a hashing scheme. A successful prediction
may take a ray directly to a leaf node and elide the entire traversal.
Mispredictions can recover by restarting from the root node. After

Figure 2: Limit study of proposed predictor, highlighting
potential memory savings (left) through improved verified
rates (right).

the prediction, our proposed predictor performs repacking between
warps currently traversing the AS to improve SIMT efficiency.

Figure 2 plots results from a limit study evaluating the potential
of ray prediction (details in Section 6.3). The results indicate 38% of
rays could be predicted using a predictor with a capacity of 5.5KB,
idealized only with the ability to perform oracle lookups that can
always identify the correct entry in the table that the ray intersects
if one exists (Potential Prediction (5.5KB)). In contrast, the imple-
mentable 5.5KB ray predictor we propose (Section 4) achieves a 26%
speedup while identifying intersections for 27% of rays (Proposed
Predictor).

To evaluate our predictor, we model a baseline ray tracing unit
that accelerates ray tracing within the context of a modern GPU,
similar to the NVIDIA RT Core [9]. We demonstrate that the cycle-
level simulation results of our ray tracing unit in isolation correlate
with the performance of an NVIDIA RT Core. Modeling a GPU
with a ray tracing unit supports realistic workloads that implement
hybrid rasterization and ray tracing. Our simulator is available
at https://github.com/ubc-aamodt-group/ray-intersection-predictor
on Github.

The contributions of this paper are as follows:

• We propose and evaluate a ray intersection predictor module
that speculatively skips ray-box intersection tests in a BVH
tree traversal and proceeds directly to nodes deep in the AS.
• We introduce a warp repacking extension in the predictor
that provides similar work distribution amongst threads in a
warp and creates memory access coalescing opportunities.
• We model a detailed baseline ray tracing unit in the cycle-
level GPU simulator GPGPU-Sim [24] correlated with the
NVIDIA RTX 2080Ti.

Section 2 introduces relevant background information on ray
tracing. Section 3 and 4 describe our proposed ray intersection
predictor. Section 5 details our methodology with a description of
our baseline ray tracing unit, followed by results in Section 6 and
related works in Section 7.

2 BACKGROUND & MOTIVATION
This section gives an overview of GPU architecture and ray tracing.
We motivate our predictor by describing the challenges of ray-
traced ambient occlusion.
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Figure 3: GPU architecture with RT unit

2.1 GPU Architecture
GPUs are massively parallel processors consisting of many stream-
ing multiprocessors (SMs). Figure 3 shows that multiple warps can
execute on a single SM. Each warp consists of 32 threads that ex-
ecute in lockstep, or SIMT fashion. Warp schedulers issue warps
in the SM and memory related units such as the load/store unit
(LDST), L1 cache/shared memory, and register file. Multiple SMs
form a cluster, and each cluster connects to the memory hierarchy
through the interconnect.

RT Cores are specialized units that accelerate ray tracing in
NVIDIA GPUs, but NVIDIA provides few details of their imple-
mentation. Therefore, we model our own version of a ray tracing
accelerator, the RT unit, detailed in Section 5.1.

2.2 Ray Tracing
Ray tracing simulates global lighting effects by tracing rays of light
in a scene. The number of rays traced per pixel and the number of
pixels in the image determine the quality. For a 1024×1024 image
with four ray samples per pixel (SPP), more than four million rays
need to be traced. A naive implementation would require over one
trillion intersection tests to render a scene such as Crytek Sponza
with 262K triangles. Therefore, primitives are often organized into
an acceleration structure (AS), further detailed in Section 2.4. Rays
traverse this AS to optimize intersection testing. An efficient hard-
ware implementation of this AS traversal is critical for real-time
ray tracing applications.

Rays are mathematically characterized as a semi-infinite line of
𝑜 + 𝑡 · 𝑑 with an origin, direction, and length. Even though rays
traverse through the AS individually, rays with similar origins (𝑜)
and directions (𝑑) take similar paths through the AS. For these rays,
there is an opportunity to memoize traversal and optimize future
rays in the frame. This memoization benefits occlusion rays, such
as AO and shadow rays, because the search terminates upon finding
the first intersection, allowing the entire traversal to potentially be
skipped.

2.3 Ambient Occlusion
Ambient lighting is the base level of illumination in a scene, often
approximated by the artist as a constant value. Ambient occlusion
is a visual effect where crevices appear darker because less ambient
light can reach them. Ray tracing produces AO by tracing many
short rays covering a hemisphere that originate from the point

Algorithm 1: BVH Traversal for Occlusion Rays
Input: 𝑟𝑎𝑦, 𝑟𝑜𝑜𝑡𝑁𝑜𝑑𝑒 of the BVH
Output: ℎ𝑖𝑡 : whether or not the ray hit a triangle

1 ℎ𝑖𝑡 ← false
2 𝑛𝑜𝑑𝑒 ← 𝑟𝑜𝑜𝑡𝑁𝑜𝑑𝑒

3 𝑡𝑆𝑡𝑎𝑐𝑘 ←∅
4 while 𝑛𝑜𝑑𝑒 ≠ ∅ do
5 while 𝑛𝑜𝑑𝑒 is not leaf do
6 foreach 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒 do
7 ℎ𝑖𝑡𝑁𝑜𝑑𝑒 ← RayBoxTest(𝑟𝑎𝑦,

𝑐ℎ𝑖𝑙𝑑.𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥)

8 if ℎ𝑖𝑡𝑁𝑜𝑑𝑒 then 𝑡𝑆𝑡𝑎𝑐𝑘 .push(𝑐ℎ𝑖𝑙𝑑)
9 𝑛𝑜𝑑𝑒 ← 𝑡𝑆𝑡𝑎𝑐𝑘 .pop()

10 while 𝑛𝑜𝑑𝑒 is leaf do
11 foreach 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 in 𝑛𝑜𝑑𝑒 do
12 ℎ𝑖𝑡 ← RayTriTest(𝑟𝑎𝑦, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒)
13 if ℎ𝑖𝑡 then break
14 𝑛𝑜𝑑𝑒 ← 𝑡𝑆𝑡𝑎𝑐𝑘 .pop()
15 if ℎ𝑖𝑡 then 𝑛𝑜𝑑𝑒 ←∅

of interest to determine the amount of occlusion. Unlike other
rays, occlusion rays do not require the closest-hit point. Any ray-
object intersection in AO indicates that the point is shadowed from
some ambient light. The proportion of rays that intersect objects
represents the amount of blocked ambient light.

This form of global AO cannot be accurately implemented in
raster-based graphics because it requires global information. Al-
ternatively, screen-space AO is available to raster-based graphics
but produces poor results due to fundamental problems such as
sampling behind objects or outside of the screen [23]. In ray tracing,
global AO is costly to compute due to the large number of rays
required to achieve a high quality result.

2.4 Ray Traversal Algorithm
Acceleration structures reduce the number of ray-primitive test
computations required to find an intersection, and the Bounding
Volume Hierarchy (BVH) is the current AS standard for ray trac-
ing [35]. BVH trees enclose primitives in leaf nodes and recursively
bounds lower level axis-aligned bounding boxes (AABBs) with
larger AABBs. If a ray misses an interior node of the tree, it will
also miss the enclosed child nodes. This property reduces the time
complexity of intersection testing from linear to logarithmic, mak-
ing the BVH critical to the performance of real-time ray tracing.

The BVH traversal algorithm can be implemented in software as
a while-while loop [2], described in Algorithm 1 for occlusion rays.
The outer while loop iterates until the ray has completed its traver-
sal. The inner while loops perform a depth-first traversal through
the BVH. Depth-first traversal often requires a per-thread traversal
stack (𝑡𝑆𝑡𝑎𝑐𝑘) or potentially a bit trail for binary trees [27]. If the
first inner while loop reaches a leaf node, then a second inner while
loop tests for primitive intersections. Traversal continues until all
ray-primitive intersections are identified, or just any ray-primitive
intersection for occlusion rays. If no ray-primitive intersections
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occur, the ray is considered to have missed the scene. We refer the
reader to [52] for more background on ray tracing.

For efficiency during traversal, a ray visits the child node closer
to the ray origin first. The first intersection may not be the clos-
est in the case that children nodes overlap. Consequently, each
ray-primitive intersection is only a candidate, and all candidates
must be identified to determine the actual closest-hit. Fortunately,
BVH trees can be implemented using balanced nodes and have
predictable memory usage. We choose to use BVH trees for this
reason and because they are commonly used in practice, as evident
in OptiX [42].

The NVIDIA RT Core follows the while-while algorithm closely.
It features a traversal unit with Box Intersection Evaluators and an
intersection unit with Triangle Intersection Evaluators [9]. The RT
Core begins with a Ray Query from the streaming multiprocessor
(SM) and triggers the traversal process. The RT Core fetches and
decodes BVH nodes from memory and performs the appropriate
intersection tests repeatedly until a closest-hit is found or a miss
is confirmed. This result is returned to the SM for processing and
shading.

2.5 Accelerating Ray Tracing
Reflection rays are often incoherent because they bounce in random
directions. They access different nodes and parts of the AS, causing
memory divergence and low SIMT efficiency on GPUs. Prior work
attempts to organize these rays into more coherent packets [1, 2, 16,
44]; however, they do not address the concern of high memory and
compute latencies noted in [17] as a major source of inefficiency.
Our solution approaches the problem differently by skipping AS
traversal for similar rays, which reduces the overall latency, and
can be combined with these techniques to tackle divergence issues
as well.

Our predictor is comparable to virtual address translation and
page-table walking [45, 46]. Rays traverse AS nodes in the same
manner that address translations walk down the page table. The
predictor table, which stores previous ray traversal results, is com-
parable to the TLB that stores prior virtual-to-physical address
translations. A pointer cache [10] similarly stores pointer deref-
erences. However, unlike the TLB and pointer cache, we do not
encounter the exact same ray again, so we cannot reuse stored
results except to make predictions. Each of the millions of rays are
likely to be entirely unique and our hashing scheme attempts to cre-
ate collisions between similar rays much like constructive aliasing.
When an intersection for a similar ray is correctly predicted, we
skip the rest of the traversal for that ray, resulting in fewer memory
accesses and less computation.

3 RAY INTERSECTION PREDICTOR
ALGORITHM

In this section, we describe an abstract overview of the ray intersec-
tion predictor algorithm and illustrate how it can skip traversing a
significant portion of BVH interior nodes.

As shown in Figure 4, before a ray begins traversing the BVH, we
first compute its hash and perform a lookup in the predictor table. If
an entry corresponding to the hash exists, a prediction with one or
more predicted nodes is returned to be evaluated. The ray traverses

Figure 4: Using the predictor to skip interior nodes. If an
entry in the predictor table is found for a ray hash, the ray
begins traversing from the predicted nodes pointed by the
red arrow.

the BVH from the predicted nodes until it finds an intersection. If
found, traversal is complete, and interior nodes are successfully
skipped. Otherwise, it is unknownwhether the ray missed the scene
or if it simply failed to find an intersection using the prediction.
In this case, the ray must perform the entire traversal from the
root node as it would have without the predictor. If an intersection
is found, the predictor table is updated with the corresponding
node. We can predict both interior and leaf nodes, which we discuss
further in Section 4.3.

First, we define terms for the predictor. A ray hits if it intersects
the scene, regardless of whether the predictor is used. Only rays
that hit can skip BVH nodes. Rays are predicted if a prediction is
found in the predictor table, verified if the ray finds an intersection
using the prediction, and mispredicted if the ray is predicted but
not verified. A good predictor should verify many rays, but the
percentage of verified rays is limited by the percentage of predicted
and hit rays.

We can estimate the number of BVH nodes skipped by a predictor
as follows. Let 𝑝 and 𝑣 be the percentage of all rays that are predicted
and verified for a given render, respectively. Also, a ray must, on
average, fetch 𝑛 nodes on a full traversal, evaluate 𝑘 predictions
from the predictor entry, and fetch𝑚 nodes when traversing from
each of the predictions. We divide this into three cases:

(1) (1 − 𝑝)% of rays are not predicted and traverse 𝑛 nodes.
(2) 𝑣% of rays are verified and traverse only 𝑘𝑚 nodes.
(3) (𝑝 − 𝑣)% of rays are mispredicted and must traverse the

predicted nodes as well as the full traversal, for a total of
𝑘𝑚 + 𝑛 nodes.
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Combining these, the number of nodes 𝑁 that an average ray tra-
verses can be estimated as:

𝑁 = (1 − 𝑝)𝑛 + 𝑣𝑘𝑚 + (𝑝 − 𝑣) (𝑘𝑚 + 𝑛)
= 𝑛 − 𝑝𝑛 + 𝑣𝑘𝑚 + 𝑝𝑘𝑚 + 𝑝𝑛 − 𝑣𝑘𝑚 − 𝑣𝑛
= 𝑛 + 𝑝𝑘𝑚 − 𝑣𝑛

As a result, the number of nodes skipped 𝑛 − 𝑁 is:

𝑛 − 𝑁 = 𝑣𝑛 − 𝑝𝑘𝑚 (1)

Equation 1 shows the intuitive result that the overall number of
nodes skipped is equal to nodes skipped from verified rays minus
the overhead of evaluating the predicted nodes. As a result, the
number of nodes skipped is increased by having a high verified
rate 𝑣 and decreased by overpredicting (increasing 𝑝) or traversing
more nodes on predictions (increasing 𝑘 or𝑚). We explore these
tradeoffs in the next section.

4 PROPOSED ARCHITECTURE
This section outlines the challenges in predicting ray intersections
and how our proposed hardware predictor overcomes them. We
describe the predictor table architecture and hashing schemes, then
discuss support for predicting interior nodes with the Go Up Level.
Because predictor mispredictions may contribute to divergence of
the traversal algorithm, we also discuss how to mitigate this with
warp repacking.

4.1 Predictor Table Architecture
Node predictions are stored in a predictor table per SM with the
structure in Figure 5. Each row in a set-associativeway is a predictor
entry consisting of a valid bit, a ray hash tag, and one or more slots
to store predicted nodes (an offset into the BVH tree buffer). The
predictor contains entries for previously encountered rays within
the same frame. Given that typical ray generation shaders select ray
directions using pseudo-random numbers, no two rays in a single
frame are likely to be identical. To identify an entry inserted by a
prior ray that a new ray is likely to intersect, we employ hashing.
When accessing the predictor, the ray parameters are hashed and
the resulting hash pattern is employed for predictor lookup. The
hash pattern is used to index the table and compared against tags
in all ways for the selected row. If a tag match is found, the ray
is considered predicted and the corresponding node addresses are
returned for verification. As noted earlier, verifying a ray prediction
involves traversing the BVH tree starting from the predicted node.
During this verification step, the full precision ray parameters are
employed while performing intersection tests.

Depending on the hash function, the number of bits 𝑛 used for
the hash may be larger than a table indexed with𝑚 bits. In this
case, we fold the 𝑛-bit hash into𝑚-bits by splitting the hash into
⌈𝑛/𝑚⌉ components and combining them with bitwise-xor, similar
to the gshare branch predictor [32].

Although the structure of the ray intersection predictor in Fig-
ure 5 may seem, superficially, similar to a cache, the predictor table
stores addresses, not node data. Unlike a BTB or more sophisticated
branch target predictors (e.g., ITTAGE [51]), the addresses stored
by the ray intersection predictor entries identify BVH tree nodes

rather than instructions. Unlike a TLB, a ray lookup in the intersec-
tion predictor is not guaranteed to find a matching entry even if
an entry containing a node that the ray intersects is present in the
table.

We compare different predictor table parameters in Section 6 and
find that using a 4-way set-associative predictor table, with 1024
total entries, one node per entry, and 15 bits for the tag, performs
the best. As shown in Equation 1, while increasing the number of
nodes per entry can increase the number of verified rays, each ray
must evaluate more nodes.

When using more than one node per entry, a node replacement
policy is required to evict predictions from entries. We use 27 bits
for each node index, which adequately manages BVH trees with up
to 227 = 134 million nodes, or at least 67 million triangles 2. This
choice is ample for modern commercial games, such as Modern
Warfare Initial Intel, which uses 24 million triangles per frame [21].

Since there are 32 rays in each warp, there could potentially be
up to 32 threads attempting a predictor table lookup or update in
each cycle. It is unrealistic to maintain 32 access ports to our predic-
tor table, so we implement a FIFO queue for predictor lookups and
a separate queue for predictor updates. We empirically find that
using four access ports is ideal. The memory system is not over-
whelmed by bursts of prediction verifications, and the hardware
area is constrained to a reasonable size. Even if including 32 access
ports was feasible, it would not improve performance. Requests
would bottleneck in the memory hierarchy, and the predictor unit
would stay idle until the next warp is ready.

4.2 Hashing
To identify rays that should share a predictor entry, we explore
strategies that quantify ray similarity. Intuitively, rays are similar
if they traverse similar parts of the BVH tree. Prior work on offline
ray tracing has explored how to improve cache hit rates by sorting
rays [44]. As it is unclear which nodes a ray intersects prior to
traversal, most ray sorting techniques combine the three dimen-
sional ray origin and the two dimensional ray direction to obtain a
sorting key [34]. We similarly encode the ray origin and direction
into a single value, but rather than using it to sort rays, we use
it to index the predictor table. The goal is to maximize predictor
table collisions between similar rays while minimizing collisions
between different rays. We evaluate two different hash functions.

4.2.1 Grid Spherical. Figure 6a illustrates the Grid Spherical hash
function. This hash function combines the quantized ray origin
and direction in cartesian coordinates and spherical coordinates,
respectively. The ray origin components 𝑥,𝑦, 𝑧 are each mapped to
the integer range [0, 2𝑛) using the scene bounding box, which is
represented by the two extreme corners. These are then concate-
nated to a single value. We refer to this as the Grid Hash block.
Likewise, the ray direction components 𝜃 ∈ [0, 180), 𝜙 ∈ [0, 360)
are quantized by discretizing to an integer and extracting the most
significant 𝑚 bits from integer 𝜃 , and 𝑚 + 1 bits from integer 𝜙 ,
before being concatenated. The two values are combined using
bitwise-xor. The choice of 𝑛, the number of bits used for the origin,
and𝑚, the number of bits used for the direction, control how tight

2This assumes the worst case of a perfect binary tree with one triangle per leaf node.
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Figure 5: Predictor Table Structure

(a) Grid Spherical hash function

(b) Two Point hash function. See Figure 6a for the Grid Hash block.

Figure 6: Hash functions

the hash function is. That is, using more bits will cause fewer rays
to map to the same entry.

4.2.2 Two Point. Figure 6b illustrates the Two Point hash function.
This hash function is based on the Two Point sorting method [34],
which combines the ray origin and an estimated target intersection
point. The ray origin is hashed with the same method as in Grid
Spherical. The estimated target intersection point is computed as
𝑡 = 𝑜 + 𝑟 · 𝑙 · 𝑑 , where 𝑡 is the target point, 𝑜 is the origin, 𝑑 is the
normalized direction, 𝑙 is the length of the maximum extent of the
scene bounding box, and 𝑟 is a fixed estimated length ratio to be
chosen. This estimated target point is then passed through the Grid
Hash block and xor-ed with the hashed origin.

We find that using the Grid Spherical hash function produces
slightly better results than using Two Point. We use five origin bits
and three direction bits, resulting in a ray hash of 15 bits.

Figure 7: Go Up Level: A ray intersects node 6. For a similar
ray, node 6 is predicted with Go Up Level 0, node 4 with level
1, and node 1 with level 2.

The above two hash functions were selected empirically and may
not be optimized. We leave the discovery of other hash functions,
along with more sophisticated hashing techniques such as combin-
ing multiple hash functions or adaptively selecting the number of
bits to use, to future work.

4.3 Go Up Level
Even very similar rays can intersect distinct primitives.We observed
that such rays will often intersect different leaf nodes, but similar
ancestor nodes of the leaves. Motivated by this, we introduce the Go
Up Level: an optimization in which instead of predicting leaf nodes,
we predict interior nodes covering a larger region of space. We
define the Go Up Level as the BVH level of the prediction relative
to the leaf node with the intersected primitive. In other words, with
a Go Up Level of 𝑘 , the 𝑘-th ancestor of the leaf node is stored in
the predictor table to be used as a prediction for similar future rays.
With a Go Up Level of 0, the leaf node itself is predicted, while with
a Go Up Level of 1 and 2, the parent and grandparent are predicted,
respectively, as seen in Figure 7.

With a higher Go Up Level, the probability of verifying a ray
increases since slightly different leaf nodes can share an ancestor;
however, for each prediction, the ray must then traverse a larger
portion of the BVH tree to verify the prediction and find an inter-
section. This tradeoff is presented in Equation 1; increasing the Go
Up Level increases 𝑣 , but also𝑚. We find a Go Up Level of around 3
works best. A more detailed evaluation is included in Section 6.2.1.
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Figure 8: BVH node structure.

Figure 9: Example ray traversal for a warp of eight threads
using the predictor.

To implement Go Up Level, leaf nodes need to track ancestors,
but most BVH nodes do not store parent pointers. Alternatively,
we can use additional stack memory to keep track of nodes during
traversal down the tree. Since we use the Aila and Laine BVH
tree [2], we can retrieve an ancestor without using additional stack
memory or incurring additional memory accesses by precomputing
the𝑘-th ancestor of each node while building the BVH and storing it
in the empty padded space. Figure 8 shows the structure of the Aila
and Laine node. The ancestor node index is then fetched together
with the child indexes on node access.

4.4 Warp Repacking
Naively implementing the predictor leads to incoherence in SIMD
execution. Therefore, we propose to restructure warps after predic-
tion to prevent mispredictions from delaying the progress of the
entire warp. In contrast to prior warp reformation approaches [15],
this restructuring takes place within the accelerator unit during the
execution of a single complex instruction per warp, which helps
avoid impacting other hardware structures such as the register file.

A warp takes as long to execute as its slowest thread. Given a
warp of 32 threads (32 rays), it is likely that there is at least one
misprediction where the ray performs a full traversal in addition to
evaluating predictions. Figure 9 shows an example warp with eight
rays traversing through the BVH tree from Figure 7 after a predictor
table lookup. The prediction can comprise of leaf nodes with one
or more primitives. Thread 5 mispredicts and executes intersection
tests with the predicted primitives before performing regular BVH
traversal. Mispredicted rays access more nodes than without the
predictor, introducing a “long tail” problem and prolonging warp
execution. All other threads must wait for Thread 5 to finish be-
fore the warp can complete. SIMT efficiency is also significantly
reduced towards the end of the traversal since only mispredicted
rays (Thread 5) are still executing.

There are three possible outcomes: an intersection is predicted
correctly (Threads 1, 4, 7, 8), mispredicted (Thread 5), or not pre-
dicted at all (Threads 2, 3, 6). Ideally, we should keep all correctly
predicted rays together so that slow threads do not delay the warp.
Rays that were not predicted should also be grouped so that they
can continue to benefit from memory coalescing within the warp.
Lastly, mispredicted rays should be maintained separately to avoid
prolonging traversal for the warp.

Even though we cannot distinguish between correct predictions
and mispredictions until after testing the predicted primitives, we
find that simply isolating predicted rays from not predicted rays is
sufficient to correct the problematic behavior. For the example in
Figure 9, Threads 1, 4, 5, 7, and 8 are separated from Threads 2, 3,
and 6. The original warp is no longer full, but the remaining threads
benefit from intra-warp memory coalescing and generally complete
their traversal in a similar timeframe. This step is necessary for the
predictor to provide performance benefits. Results and a comparison
to a predictor without repacking are included in Section 6.2.2.

4.4.1 Implementation. We perform repacking in the predictor unit.
After threads have completed their predictor table lookup, the pre-
dicted rays are removed from thewarp and not predicted rays remain.
Predicted rays are queued in the partial warp collector illustrated
in Figure 10. This structure only stores the ray IDs of predicted
rays until it fills up with 32 rays or reaches a timeout, at which
point they are queued for traversal. We only track ray IDs because
the remainder of the data associated with each ray is stored in the
ray buffer, indexed by the ray ID. The collector totals only 0.2% of
the register file size, storing up to 64 ray IDs and maintaining a
5-bit timeout counter. We impose a short timeout to ensure timely
processing when there are insufficient rays. We find timeout values
ranging from 5-30 cycles show insignificant differences. We allow
for up to 64 ray IDs in order to store overflowing rays. For example,
if the collector had 30 rays in it before the timeout and another
warp adds 15 predicted rays, then there would be 45 rays in the
collector for one cycle until 32 rays are moved out and queued for
traversal.

During repacking, ray IDs are moved between buffers used to
track the progress of warps within the RT unit. Since each thread
traces a single ray, most of the associated data is already stored in
the ray buffer described in Section 5.1.1. In the context of the base-
line RT unit, this repacking step only updates the thread index into
the ray buffer and bypasses the complex constraints of aligning to
the register file. Other warp reformation methods such as Dynamic
Warp Formation [15], Thread Block Compaction [14] and Large
Warps [40] require threads to remain in their respective lane after
shuffling to different warps, but this is not necessary for the predic-
tor repacking proposed here. The predictor repacking persists only
within the RT unit, so no architecturally visible register values need
to move for subsequent instructions. We assume that threads are
arbitrarily grouped into warps for the traversal only, and mixing
these groupings does not impact future shading instructions as all
results are stored based on ray ID.

4.4.2 Additional Warps. Since warps become under-utilized after
the repacking step, there should be enough resources to sustain
additional warps in the ray tracing unit. We can increase the limit
on the number of simultaneously executing warps. To ensure the
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Figure 10: Diagram of the baseline RT unit enhanced with
the ray intersection predictor and warp repacking logic.

RT unit is not overwhelmed, only newly created warps can still
be dispatched when the RT unit is "full". A new repacked warp
can be dispatched as long as more than 32 ray buffer slots are
still available. Although this is not as crucial as implementing the
basic warp repacking, the benefits of including additional warps
are compared in Section 6.2.2.

4.5 Hardware Implementation
Figure 10 summarizes the baseline RT unit (detailed in Section 5.1),
augmented with the predictor. The Ray Buffer stores Ray ID, Ray
Properties, and Ray Status—the current stage of traversal for this
ray—for rays in the RT unit. A Traversal Stack is allocated for each
ray to track their next accesses. Any new rays will be scheduled
to perform a predictor table lookup using a hash computed based
on the Ray Properties. If the lookup is successful and a prediction
is made, the predicted nodes are pushed to the top of the ray’s
Traversal Stack. Otherwise, ray traversal proceeds as normal.

5 METHODOLOGY
This section describes the simulator and simulation setup for the
ray intersection predictor. We extended GPGPU-Sim 4.0.1 [24] to
model an RT unit similar to NVIDIA’s RT Core for our baseline, de-
scribed in Section 5.1. We do not simulate the full graphics pipeline
because our predictor is only involved in the ray traced portion of
the workload. In hybrid rendering, ray traced AO would typically
run after traditional raster graphics passes and is combined using
blending [8]. Section 5.2 describes the ray tracing benchmarks, the
ray generation process, and the simulator configuration.

For energy analysis, we use GPUWattch [29] to estimate en-
ergy changes in the GPU, including cache and DRAM accesses. We
model the remaining major components using CACTI7 [5] with a
45nm process. The predictor table, traversal stacks, ray buffer, and
partial warp collector from Figure 10 are all modeled as SRAMs
with overheads conservatively calculated based on access energy.
Warp repacking energy covers the partial warp collector and addi-
tional accesses to the ray buffer. We conservatively estimate energy
for the intersection units [39] as adders and multipliers [19], and

assume all other control elements have relatively negligible energy
overheads.

5.1 Ray Tracing Unit
"Magic" instructions that perform hundreds of operations and inter-
act with custom storage units have been established as the solution
to energy efficient computers [18]. In the context of ray tracing, the
entire traversal and intersection process can be treated as a single
__traceray() instruction like the NVIDIA RT Core Ray Query. For
our baseline architecture, we model a ray tracing unit consisting
of a traversal block and a ray-triangle intersection block similar
to the NVIDIA RT Core. The RT unit is accessed using the special
__traceray() instruction that passes in all necessary ray data and
the root node of the AS. The instruction is intercepted from normal
GPU execution, redirected to execute in the RT unit, and the results
are written back.

The RT unit is set up as a variable latency function unit, similar
to the LDST unit in GPUs. For each iteration of Algorithm 1, the RT
unit fetches the relevant bounding volume or primitive data. The
RT unit is multiplexed with the LDST unit to access the L1 cache
and the remainder of the memory hierarchy.

5.1.1 Interface. Our CUDA ray tracing kernel traces one ray per
thread. The ray data is retrieved using the thread ID and includes
origin, direction, and t-parameters that define the ray length. This
data, along with the root node of the BVH tree, is passed into the RT
unit for each thread. The RT unit stores the data in the ray buffer,
indexed by the ray ID, and tracks warp completion with counters
in the controller. The RT unit executes up to eight warps at once,
so the ray buffer stores a maximum of 32 × 8 = 256 rays.

5.1.2 Traversal Unit. Every new __traceray() command received
triggers the controller to initialize a traversal stack. We configure
the traversal stack to accomodate eight entries, which is sufficient
for many traversals, and occasionally overflows to thread-local
memory as described in [2]. The traversal begins with the root
node, then proceeds depth-first through the BVH structure, pushing
unvisited nodes to the traversal stack.

Multiple warps may reside in the RT unit at once and thus the
memory scheduler must select which one to prioritize when sched-
uling memory requests. Motivated by greedy-then-oldest sched-
uling [48], we prioritize a given warp until all the threads in the
warp are waiting for memory requests before proceeding to the
next warp. The memory scheduler first selects a warp, then selects
the next node using a FIFO queue, merging any identical nodes
from different rays of the same warp into a single memory request
in an MSHR-like fashion. This is especially important early in the
traversal process, where most rays access the same nodes (such as
the root node). The next node is then popped from the stack in each
iteration, requested from the L1 cache in thread order, and tracked
in the ray buffer with its appropriate ray.

When the data returns, the node is broadcasted to the ray buffer.
Any matching entries trigger an intersection test, and the ray and
node data are forwarded to the intersection unit. The controller
updates the ray status and warp-tracking counters based on the
intersection test results. When the counters indicate a completed
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Table 1: Summary of benchmark scenes

Scene Sibenik (SB) Crytek
Sponza (SP)

Lost Empire
(LE)

Living Room
(LR)

Fireplace
Room (FR)

Bistro
(Interior) (BI)

Country
Kitchen (CK)

Triangles 75K 262K 225K 581K 143K 1M 1.4M
BVH Tree Depth 23 23 22 23 23 25 27
AO Rays Traced 4.2M 4.2M 3.9M 4.2M 4.2M 4.2M 4.0M

warp, the controller frees the traversal stacks and signals warp
completion.

5.1.3 Intersection Unit. The intersection unit accelerates two types
of intersection tests, the ray-box test while traversing through BVH
nodes and the ray-triangle test once a leaf node is reached. We
model this unit after the traversal and intersection units of the T&I
engine [39], using a two stage pipelined ray-triangle test and a
simple set of adders, multipliers, and comparators for ray-box tests
[28]. There are 32 pipelined hardware units for each test type, such
that all 32 threads in a warp can compute their ray intersection in
parallel. Since the memory scheduler only requests data for a single
warp at once, an input queue is unnecessary. At each cycle, the
ray and node data are forwarded and the appropriate intersection
units are signaled by the controller to perform computation based
on the data type. Once the pipelined intersection test is complete,
the output is returned through the ray buffer and the controller
updates the ray status accordingly. The next node is pushed onto
the traversal stack if necessary.

5.1.4 Memory Interface. Memory requests from the RT unit are
sent to the L1 cache, which then connects to the remainder of the
memory hierarchy. Since there are usually no other competing
instructions, the L1 cache can sufficiently manage ray tracing mem-
ory requests. We use a 64KB L1 cache and explore other possible
configurations, such as a dedicated RT cache, in Section 6.2.3.

5.1.5 Latency. Each element in the RT unit contributes to the over-
all traversal latency. A minimum traversal would require one cycle
to queue, two cycles to access the predictor table, one cycle to access
the L1 cache, and two cycles to perform an intersection test. This
latency would vary depending on predictor results, the length of
the traversal, and memory access latencies. A latency sensitivity
study is included in Section 6.2.4.

5.1.6 Correlation. Although the RT unit has a traversal unit and
an intersection unit just as the NVIDIA RT Core, we cannot con-
firm similarities beyond this. Key factors such as how multiple rays
co-exist within NVIDIA’s RT Core, howmemory requests are sched-
uled, and how ray data is maintained are not disclosed by NVIDIA.
Therefore, we do not attempt to model the RT Core exactly, but
rather a similar, generalized RT unit.

We simulate primary rays and reflection rays on a few common
benchmark scenes listed in Table 1 on our RT unit. We compare this
to a basic Vulkan implementation [60] of primary rays and reflection

Figure 11: Correlation between simulated ray tracing unit
and the NVIDIA RT Core

Table 2: GPGPU-Sim Configuration

# Compute Clusters 2
# SM / Compute Cluster 1

# Streaming Multiprocessors (SM) 2
Max Warps / SM 64

Warp Size 32
Number of Threads / SM 2048

Baseline Scheduler GTO
Number of Warp Schedulers / SM 4

Number of Registers / SM 32768
Constant Cache Size / SM 64KB

Instruction Cache 128KB, 128B line, 16-way assoc.
L1 Data Cache + Shared Memory 64KB, 128B line, Fully assoc. LRU

L2 Unified Cache 1MB, 128B line, 16-way assoc. LRU
Compute Core Clock 1365 MHz
Interconnect Clock 1365 MHz

L2 Clock 1365 MHz
Memory Clock 3500 MHz

DRAM request queue capacity 64
Interconnect Flit Size 40

Interconnect Input Buffer Size 512
Cluster Ejection Buffer Size 32

# RT units 2
# Predictors 2

rays on an NVIDIA RTX 2080Ti GPU. The same benchmark scenes
with a similar number of rays are compared. Figure 11 shows the
rays/s correlation between the two.

We achieve a high correlation coefficient of 0.9, but the test
sample is small and the two approaches are not identical. We cor-
relate our baseline to a high-end NVIDIA GPU for validation as it
is currently the only consumer GPU with accelerated ray tracing.
However, we target our design at mobile GPUs, aiming to speed up
ray tracing in the more demanding mobile context.
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Table 3: Predictor simulation configurations

Number of Entries 1024
Number of Nodes per Entry 1

Hash Function Grid Spherical: 5 origin bits, 3 direction bits
Predictor Table Placement Policy 4-way set-associative

Predictor Table Replacement Policy LRU
Node Replacement Policy LRU

Access Bandwidth 4 accesses per cycle
Access Latency 1 cycle
Go Up Level 3

Repacking Enabled Yes

Table 4: Energy analysis breakdown in nJ/ray

Component Baseline RT
unit

Change from
Predictor

Base GPU 293.43 -20.01
Predictor table – +0.02
Warp repacking – +0.05
Traversal stack 0.24 -0.03
Ray buffer 1.71 -0.19
Ray intersections 0.88 -0.11
Total 296 nJ/ray -20 nJ/ray

5.2 Simulation
From this baseline RT unit, we then model the proposed ray inter-
section predictor and assess its effectiveness by comparing results
to the baseline. We choose seven common scenes [33] as our bench-
marks listed in Table 1. Around four million AO rays are generated
for each scene by first computing the primary ray hit point for
each pixel in a 1024×1024 viewport, and then creating four AO rays
per hit point by random cosine sampling the upper hemisphere
surrounding the point. These rays have a length matching 25-40%
of the scene bounding box diagonal length to represent relevant
areas near the point that could potentially block ambient light. We
compare the effect of ray ordering by also sorting the rays with the
Aila and Laine Morton order quicksort algorithm [2]. We simulate
these rays in GPGPU-Sim, testing for any-hit intersections using
the RT unit and predictor.

Table 2 outlines the GPU configurations for GPGPU-Sim and
Table 3 lists the predictor settings we simulate.

6 RESULTS
Figure 12 plots the speedup and Figure 13 plots memory accesses
for our proposed predictor. These results show that the predictor
reduces memory accesses by 13% and overall execution time by a
geometric average of 26%. Sorted rays benefit less from the pre-
dictor because similar rays are traced close together and do not
have an opportunity to train the predictor. Ray sorting is generally
advantageous because it reduces divergence. However, recent work
has shown that the overhead of ray sorting is larger than the gains
it provides when using RTX acceleration [34]. We include sorted
ray results to show that our predictor exploits behavior orthogonal
to sorting.

The predictor generates an additional 9% of memory accesses,
5.5% of which are wasteful mispredictions on average. However, the
net result is a 12% reduction of interior node accesses for ray-box

Figure 12: Speedup of proposed ray intersection predictor
(with repacking) over baseline RT unit.

Figure 13: Memory accesses and predictor overheads com-
pared to baseline RT unit.

Table 5: Estimated vs Actual Reductions in Node Accesses

v n p k m Estimated Actual
0.246 28.382 0.955 1 2.810 4.298 3.726

Table 6: Speedups for different table sizes

Number of Entries Number of Nodes per Entry
1 2 4

512 24.8% 24.6% 23.7%
1024 25.8% 25.3% 24.2%
2048 25.4% 24.9% 23.4%

intersection tests and 2% reduction of primitive accesses despite
mispredictions. Combined, net memory accesses decrease by 13%,
improving performance and diminishing memory system stress.
Table 5 shows this result is similar to memory savings calculated
using Equation 1 using averages across all scenes.

Approximately 7% of energy is saved using the predictor, and
a full breakdown is included in Table 4. Although the predictor
requires additional power, DRAMenergy still dominates, decreasing
the overall energy with shortened execution time.

6.1 Predictor Table Configurations
This section explores varied predictor table configurations.

6.1.1 Table Size. Table 6 compares the number of entries and nodes
per entry in the predictor table. The optimal size occurs at 1024
entries with one node per entry. Verified rays increase with the
number of nodes, but results worsen because predictions are more
expensive. Increasing the number of entries also does not necessar-
ily improve the predictor since the goal is to maximize collisions
between similar rays. With 1024 entries and 1 valid bit + 15 tag
bits + 1 node per entry with 27 bits = 43 bits per entry, the area
overhead of the predictor table is roughly 5.5 KB per SM. To achieve
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Table 7: Comparison of placement policies

Policy Speedup Predicted Verified
Direct-mapped 15.9% 58.7% 15.1%

2-way 23.1% 86.3% 22.7%
4-way 25.8% 95.5% 24.6%
8-way 25.5% 96.2% 23.5%

Table 8: Speedups for different hash functions

(a) Grid Spherical Hash Function

Number of
Origin Bits

Number of Direction Bits
1 2 3 4 5

3 19.1% 19.4% 19.3% 16.1% 21.5%
4 20.4% 21.9% 24.0% 22.9% 18.3%
5 22.3% 24.7% 25.8% 23.3% 14.0%

(b) Two Point Hash Function

Number of
Origin Bits

Estimated Length Ratio
0.05 0.15 0.25 0.35

3 18.8% 19.3% 18.2% 18.2%
4 19.4% 24.7% 20.7% 17.0%
5 23.1% 15.5% 9.0% 6.8%

similar speedups without a predictor, the L1 cache would have to
be around 6× larger at 384KB for our benchmarks, as indicated in
Figure 1 (right).

6.1.2 Placement Policy. We compare different placement policies
in the predictor table: direct-mapped, 2-way, 4-way, and 8-way
set-associative. In the direct-mapped predictor table, a tag is still
used so that rays with the same index but different hashes will
not use the same entry. Table 7 compares speedup between these
policies as well as the percentage of predicted and verified rays.
For all cases, we use LRU as the replacement policy and find that
4-way set-associative performs best. A larger ratio of verified to
predicted rays would be ideal, but the benefits of skipping most
of the traversal when verified already outweigh the low cost of
evaluating mispredicted nodes.

6.1.3 Node Replacement Policy. As predictions are added to entries
in the predictor table, older predictions must be evicted. Although
we use one node per entry in our configurations, we test differ-
ent replacement policies for other configurations that may use
multiple nodes per entry. We compare three policies: Least Fre-
quently Used (LFU), LRU, and LRU-K, which keeps track of the last
𝐾 references [43], and find that the differences between them are
insignificant.

6.1.4 Hash Functions. Table 8a and 8b show the results of the two
hash functions. Using five origin bits and three direction bits for
Grid Spherical gives a good balance in the tightness of the hash
function and the largest speedup. Two Point gives comparable
results.

Figure 14: Increased verified rate versus decreased memory
access savings for different Go Up Levels.

Figure 15: Performance with warp repacking (Repack),
repacking with four additional warps (Repack 4), and no
repacking (Default) relative to the baseline RT unit.

6.2 Other Predictor Configurations
6.2.1 Go Up Level. Increasing the Go Up Level creates more oppor-
tunities to make useful predictions at the expense of more costly
mispredictions and reduced memory savings per prediction. When
predicted, the ray must still traverse through some interior nodes,
adding additional delay on mispredictions. Figure 14 illustrates this
tradeoff. The percentage of verified rays increases with Go Up Level,
but eventually the memory savings peak. Any further increase of
the Go Up Level does not improve performance, and we find that
a Go Up Level of 3 performs best. Despite the highest memory
savings with level 5 in Figure 14, level 3 performs better because
Go Up Level also influences the order and composition of memory
requests, which affects the cache hit rate and DRAM utilization.

6.2.2 Warp Repacking. Figure 15 demonstrates the effect of warp
repacking on the benchmark scenes. In the Default setting, the
predictor sometimes causes a slowdown because the elongated
mispredicted threads delay completion for the entire warp. After
repacking the threads into separate warps (Repack, Section 4.4.1),
performance improves by a geometric average of 17% from Default.
The additional performance gains beyond memory access savings
arise from a better interleaved mixture of interior and leaf node
memory requests in repacked warps, which creates more random
accesses and improves bank parallelism in the DRAM by 41%. By
allowing additional warps, the performance can be increased by an
additional 7% for four additional warps (Repack 4, Section 4.4.2).

6.2.3 L1 Cache. Since the majority of ray tracing memory accesses
are not unique, implying they could be cached given enough capac-
ity, the cache is crucial. Interfacing the RT unit with the L1 cache
performs well when there are no competing memory operations
from the rest of the SM pipeline. Alternatively, a specialized RT
cache can be placed in the RT unit. We found diminishing returns
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Figure 16: Cache hit rates (left) and speedup (right) for vary-
ing cache configurations.

Figure 17: Latency sensitivity for intersection tests, and
predictor lookup latency and bandwidth, averaged over all
scenes.

for L1 cache sizes larger than 64KB. A full comparison is included
in Figure 16.

6.2.4 Latency Sensitivity. Guthe [17] found latency has a signifi-
cant effect on ray tracing workloads executing on a GPU, and thus
we study the impact of the latency of different portions of the RT
unit. The leftmost group of bars in Figure 17 show the effect of in-
creasing the latency of intersection tests and the resulting lowered
speedups. The numbers over the bars indicate the latency in cycles
of the intersection test unit. We also explore varying access latency
and bandwidth (rays per cycle) for the predictor (next two sets of
bars). The results indicate latency is less important for the predictor
than for intersection tests. Similarly, increasing the bandwidth of
the predictor has little benefit. Only one prediction is performed
per ray while many intersection tests per ray are required for rays
without predictions or with mispredictions.

6.2.5 GPU Configurations. Since the predictor table is local per
SM, GPU configurations with more SMs performworse because pre-
diction opportunities are reduced from segregated rays. However,
90% of the reported savings are still retained for up to six SMs. This
effect can likely be mitigated by tuning the predictor. We evaluate
our predictor in the mobile GPU context but find similar benefits
apply to a desktop GPU similar to the NVIDIA RTX 2080 Ti. Using
the same predictor configurations, memory accesses decrease by
5% on average.

6.3 Limit Study
Figure 2 plots the results from a limit study of ray prediction. The
left graph shows memory savings with both our implementable
predictor and three idealized predictors. The right graph shows the
percentage of rays verified. Using realistic configurations (Predic-
tor) leads to around 13% memory savings and 27% verified rays.
However, given the ability to always select a predictor table entry
that results in a verified ray (oracle lookup, OL, left graph; Poten-
tial Prediction (5.5KB), right graph), the percentage of verified rays

increases by 11% to 38%. By avoiding overheads of mispredicted
rays, memory savings with OL nearly double to 24% on average. If
we can train the predictor assuming an unbounded predictor table
where we always find a BVH node if that node was intersected by
a prior ray (oracle training, OT, left graph; Potential Prediction (∞),
right graph), we can reach up to 58% memory savings. Lastly, if we
allow threads to immediately update this unbounded predictor table
without accounting for the latency of BVH tree traversal (oracle
updates, OU ), we observe another 0.25% memory savings.

6.4 Other Applications
We also evaluate the predictor for global illumination (GI) applica-
tions. For these closest-hit rays, we use predicted intersections to
trim the ray’s maximum length before traversal rather than predict-
ing the final hit point. Despite being designed for occlusion rays,
the predictor achieves 4% average speedup on our scenes for GI
with three ray bounces.

7 RELATEDWORKS
This paper builds upon preliminary studies of ray prediction by our
group [11, 12] that explored idealized predictor structures without
considering their implementation in a GPU pipeline. Ray tracing
is also a well explored area and this section surveys a variety of
works that are related to accelerating ray tracing.

Hardware Accelerated Ray Tracing. Specialized hardware for
ray tracing has long been explored. Earlier designs such as Saar-
COR [50] and RPU [61] included similar traversal and intersection
structures. However, these are implemented as independent de-
vices and do not cooperate with the GPU. Since rasterization is still
important for real-time rendering and ray tracing can be used to
augment it, ray tracing hardware should not be entirely decoupled
from the existing GPU.

In more recent work, Trax [54] and MIMD threaded multipro-
cessors (TM) [26] are MIMD processors capable of traversing in-
coherent rays. Nah et al. introduced T&I engine [39], dedicated
hardware for traversal and intersection on KD-trees. RayCore [38]
and SGRT [28] employ T&I cores to enable ray tracing on mobile
devices. Deng et al. show the differences between these architec-
tures in [13]. Kopta et al. [25] change GPU architectures to enable
reconfigurable pipelines to reduce energy usage. Shkurko et al. [53]
focus on avoiding random memory accesses during ray traversal.
They divide acceleration structure into segments and store rays
inside the acceleration structure for each segment which enables
them to achieve perfect prefetching. Ni et al. [41] partition KD-tree
into sub-trees and build a scheduling mechanism to regroup rays
on each sub-tree into warps. These works rely on improving per-
formance by speeding up each individual traversal step, whereas
we propose to reduce the workload by completely skipping over
parts of the traversal. We build on top of a baseline ray tracing
unit with similar performance to these works and improve it with
a microarchitectural technique of speculative traversal elision3.

3This term is inspired by Speculative Lock Elision [47], except we elide BVH tree
traversal as opposed to locks.



Intersection Prediction for Accelerated GPU Ray Tracing MICRO ’21, October 18–22, 2021, Virtual Event, Greece

GPU Traversal Algorithms. GPU ray tracing greatly benefits from
more efficient traversal algorithms. Aila et al. [2] proposed group-
ing rays into ray packets and traversing rays together, improving
memory coherence. Aila et al. [1] improved upon this idea and
introduced treelets during tree traversal, batching together rays
traversing the same treelets and further reduced divergence. Prior
works have also explored GPU ray tracing with a short-stack [22]
or without keeping a traversal stack [7, 20], which reduce mem-
ory traffic during traversal. These works improve performance via
software methods without changing the underlying architecture.

Ray Sorting / Reordering. Ray sorting improves ray coherency
and reduces divergence during GPU traversal. Pharr et al. [44]
introduced the idea of reordering ray computation to improve ray
coherency and increase cache utilization. Garanzha and Loop [16]
sorted rays based on ray origin and direction before processing them
in packets. Moon et al. [37] took a different approach by sorting
rays based on their final hit points. Meister et al. [34] improved
on sorting heuristics to further minimize ray incoherence. These
works complement our proposed ray intersection predictor.

Acceleration Structure Optimizations. Some works optimize the
structure of BVH trees to improve performance. Ylitie et al. [62]
explored wide BVH trees to increase SIMD utilization. Lin et al. [30]
restructured BVH tree nodes with a novel node splitting technique,
reducing the memory footprint of the AS. These techniques should
also work in parallel with our proposed ray intersection predictor.

Warp Repacking. Warp repacking aims to reorganize threads
in diverged warps to regain SIMT efficiency. Authors in [14, 55]
explored this idea in a GPU compute context. Wald [58] took the
idea and extended it to a CUDA path tracer. Lu et al. [31] repacked
threads from different warps with the same traversal state for higher
ray coherence. We took inspiration from these works and extended
them for our predictor.

8 CONCLUSION
In this paper, we presented a ray intersection predictor to accelerate
ray-traced AO. By storing a history of ray hashes and their corre-
sponding ray intersection results in a predictor table, we can skip
BVH nodes for future rays. Naively implementing the predictor in
SIMD execution leads to incoherence, and thus warps are restruc-
tured after predictions, separating out predicted rays. Simulation
results show that the predictor achieves, on average, a 26% speedup
over the baseline RT unit and reduces memory accesses by 13%.

There are still many exciting directions to explore on ray inter-
section prediction. The limit study we presented indicates potential
for improvements through better predictor structures. Moreover, in
this paper we mainly focused upon AO, one of the many lighting
effects that benefit from ray tracing. While we presented results for
an extension of the predictor to global illumination, which requires
closest-hit points, more can presumably be achieved. Exploring
the predictor on dynamic scenes and animations is also likely a
compelling avenue. Predictor states could potentially be preserved
between frames and the predictor retrained only for dynamic ele-
ments.
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A ARTIFACT APPENDIX
A.1 Abstract
We model the baseline ray tracing unit and ray intersection predic-
tor in GPGPU-Sim. We evaluate our model on various machines
running Ubuntu 18.04 and collect results to generate our figures.
In this section, we provide detailed instructions on how to use our
simulator and generate Figure 12, which contains the main results
of the paper. In addition, we provide a ready-to-run Docker image
with all dependencies installed and the simulator compiled. There
are no specific hardware requirements for this process.

A.2 Artifact check-list (meta-information)
• Program: provided
• Compilation: gcc/g++, cuda
• Model: graphical models, included
• Run-time environment: Ubuntu 18.04, no root access required
• Hardware: CPU with >30GB RAM
• Metrics: execution time
• Output: file, plot generated with provided scripts
• Experiments: provided scripts and some manual steps
• How much disk space required (approximately)?: 30GB
• How much time is needed to prepare workflow (approxi-
mately)?: less than 1 hour
• How much time is needed to complete experiments (approxi-

mately)?: less than 1 day (in parallel), around a week (individually)
• Publicly available?: Yes
• Code licenses (if publicly available)?: GPGPU-Sim (BSD-3)
• Data licenses (if publicly available)?: Model files (CC BY 3.0)
• Archived (provide DOI)?: 10.5281/zenodo.5147579

A.3 Description
A.3.1 How to access. Our simulator can be found on Github:
https://github.com/ubc-aamodt-group/ray-intersection-predictor
The ray tracing benchmark, models, and simulator are also all
included in our Docker image located in Zenodo:
https://doi.org/10.5281/zenodo.5147579

A.3.2 Hardware dependencies. There are no specific hardware de-
pendencies for this project. However, the simulation of larger ray
files can take multiple hours for each model and require more RAM.

A.3.3 Software dependencies. We run our simulator on Ubuntu
18.04 and have not tested it on other platforms. Our application
requires several dependencies to be installed, including all the de-
pendencies of GPGPU-Sim:
• gcc/g++
• CUDA Toolkit 10.0
• Embree v3.13.0
• libtbb
• zlib
• flex
• bison
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• makedepend
• python3

We also require Docker to be installed to run the Docker con-
tainer. These dependencies are all already installed in our Docker
image.

A.3.4 Models. We include .obj files for the graphics models we
use in our paper. These can also be obtained from [33]. We also
include .ray_files, which contain the specific rays we simulated
in our paper. These rays are randomly generated as described in
Section 5.2.

A.4 Installation
The entire system and all dependencies are included in our Docker
image, which can be downloaded from Zenodo:
https://doi.org/10.5281/zenodo.5147579
Load the Docker image and start the container with a bash terminal.
sudo docker load < rtpredictorimage.tar.gz
sudo docker run -it rtpredictor:latest /bin/bash

The environment variables can be set up manually if necessary:
export CUDA_INSTALL_PATH=/usr/local/cuda-10.0
export LD_LIBRARY_PATH=/home/tools/embree-3.13.0.x86_
64.linux/lib:/home/tools:$LD_LIBRARY_PATH
source /home/simulator/setup_environment debug

A.5 Experiment workflow
Inside the Docker container are the ray tracing application and sim-
ulator (/home/rtao and /home/simulator, respectively). Sample
scripts to run various configurations are included in the /home/
performance_sweep folder. In general, the configurations are set
in the gpgpusim.config file, and the application can be simulated
with the following command:
./magic_CWBVH --anyhit -m $MODEL -f $RAY_FILE

Alternatively, two shell scripts have been prepared to sweep
models for the performance results.
/home/performance_sweep/sweep_scenes_small.sh
/home/performance_sweep/sweep_scenes_large.sh

A.6 Evaluation and expected results
Sweeping the models for performance results will collect data that
generates Figure 12. These results show the performance gains of
using our ray intersection predictor, relative to the baseline ray
tracing unit, for both sorted and unsorted rays. Run the script to
plot the data into a bar chart saved as results.png that matches
Figure 12.
python3 /home/performance_sweep/plot_results_bar.py

A.7 Experiment customization
The experiment can be customized by adjusting the parameters
found in the gpgpusim.config file to control different parameters
discussed in the paper. Other graphical models can also be used,
providedwith a .obj filematching the format of the existing sample
models in the Docker image.
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